DP - 1. Fibonacci, 2. Factorial
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1 F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
Solution :
Approach - Recursion:
class Solution {
public int fib(int n) {
if(n==0) return 0;
if(n==1) return 1;
return fib(n-2)+fib(n-1);
}
}
Approach - DP:
class Solution {
public int fib(int n) {
int[] f = new int[n+2];
f[0] = 0;
f[1] = 1;
for(int i=2; i<=n; i++) {
f[i]=f[i-1]+f[i-2];
}
return f[n];
}
}
----------- X -----------
Given a positive integer, N. Find the factorial of N.
Example 1:
Input:
N = 5
Output:
120
Explanation:
5*4*3*2*1 = 120
Example 2:
Input:
N = 4
Output:
24
Explanation:
4*3*2*1 = 24
Your Task:
You don't need to read input or print anything. Your task is to complete the function factorial() which takes an integer N as input parameters and returns an integer, the factorial of N.
Expected Time Complexity: O(N)
Expected Space Complexity: O(1)
Constraints:
0 <= N <= 18
Solution :
Approach - Recursion:
class Solution{
public static long factorial(int n){
if(n<2) return 1;
return n*factorial(n-1);
}
}
Approach - DP:
class Solution{
long[] dp = new long[100];
public long factorial(int n){
if(n<2) return 1;
else {
if(dp[n]==0) {
dp[n] = n*factorial(n-1);
}
return dp[n];
}
}
}
No comments